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A. Vişinescua and D. Grecu

Department of Theoretical Physics, National Institute for Physics and Nuclear Engineering “Horia Hulubei”,
PO Box MG-6, Mǎgurele, Bucharest, Romania

Received 8 January 2003 / Received in final form 29 May 2003
Published online 4 August 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. The discrete self-trapping equation (DST) represents an useful model for several properties of
one-dimensional nonlinear molecular crystals. The modulational instability of DST equation is discussed
from a statistical point of view, considering the oscillator amplitude as a random variable. A kinetic
equation for the two-point correlation function is written down, and its linear stability is studied. Both
a Gaussian and a Lorentzian form for the initial unperturbed wave spectrum are discussed. Comparison
with the continuum limit (NLS equation) is carried out.

PACS. 63.70.+h Statistical mechanics of lattice vibrations and displacive phase transitions –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Yv Solitons

1 Introduction

The discrete self-trapping (DST) equation

i
dan

dt
− ω0an + λ(an+1 + an−1) + µ|an|2an = 0 (1)

is a typical equation for a system of harmonically cou-
pled nonlinear oscillations [1,2] relevant for several phys-
ical problems. We mention here only Davydov’s model of
energy transport in α-helix structures in proteins [2–4],
where (1) appears as a certain approximation of the
model. In (1) an is the complex classical dimensionless
amplitude of the oscillator of frequency ω0 in the nth
molecule, and λ, µ (of dimension of frequency) are the cou-
pling constants between nearest neighbor oscillators and
the one-site nonlinearity respectively. It is well known that
depending upon of the parameters and the chosen initial
condition the equation (1) can lead either to self-trapping
(i.e. local modes or solitons), or to chaos, or to a mixture
of the above two behaviors [1,2,5]. Instead of (1) we shall
consider the equation

i
dan

dt
+ λ(an+1 + an−1) + µ|an|2an = 0 (2)

which is obtained if an → ane−iω0t. This equation admits
plane wave solutions with constant amplitude

an = aei(kn−ωt)
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(the lattice constant is taken equal with unity) but with
an amplitude depending dispersion relation

ω(k) = −2λ cosk − µ|a|2.
This is a Stokes wave solution and it is well known to be
unstable at small modulation of the amplitude (Benjamin-
Feir or modulational instability) [6]. This can be discussed
by two distinct approaches. The first one is a determinis-
tic approach [6–16] and is very used in different physical
situations. Applied to our equation (2) it gives

ImΩ = 4λ cos k sin
K

2

√
µ

2λ
|a|2 1

cos k
− sin2 K

2
·

This instability appears if ImΩ > 0 and from the previous
expression this takes place if µ, λ have the same sign and
sin K

2 < ( µ
2λ cos k |a|2)

1
2 .

The second approach takes into consideration the sta-
tistical properties of the medium where the instability de-
velops. This is less used although there are notable re-
sults, especially in hydrodynamics [17,18] and in plasma
physics [13].

In this approach ȧn is considered a random variable
and the statistical properties are introduced through two-
point correlation functions. Such a discussion for a discrete
system is still missing and the present paper wants to fill
this gap.

In the next section a kinetic equation for a two-
point correlation function is obtained. Using a Wigner-
Moyal transform the equation is written in a mixed
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configuration-wave vector space. The linear stability
around a homogeneous basic solution is discussed in Sec-
tion 3. An integral stability equation is derived, very sim-
ilar with the dispersion relation of the linearized Vlasov
equation in ionized plasmas. Different forms for the spec-
trum of the initial unperturbed condition will be consid-
ered, namely a δ-spectrum, a Gaussian and a Lorentzian
form and the increment of the modulational instabil-
ity is calculated. Comparison with the continuum limit,
when (1) transforms into the nonlinear Schrödinger equa-
tion is done. Few concluding remarks are also presented.

2 Kinetic equation for two-point correlation
function

Introducing the displacement operator by an±1 = e
∂

∂n an

the equation (2) becomes

i
∂an

∂t
+ 2λ cosh

∂

∂n
an + µ|an|2an = 0. (3)

In order to find a kinetic equation we write (3) for n = n1,
multiply it by a∗

n2
, add it to the complex conjugated of (3)

for n = n2 multiplied by an1 and finally take an ensemble
average. One obtains

i
∂

∂t
〈an1a

∗
n2
〉 + 2λ

(
cosh

∂

∂n1
− cosh

∂

∂n2

)
〈an1a

∗
n2
〉

+ µ(〈an1a
∗
n1

an1a
∗
n2
〉 − 〈an2a

∗
n2

an1a
∗
n2
〉) = 0 (4)

which besides the two point correlation function
ρ(n1, n2, t) = 〈an1(t)a∗

n2
(t)〉 contains also four-point corre-

lation functions. If an corresponds to a Gaussian process,
and this property is retained during the evolution, a four-
point correlation function factorizes exactly in products of
two-point correlation functions [19]

〈an1a
∗
n1

an1a
∗
n2
〉 = 2〈an1a

∗
n2
〉〈an1a

∗
n1
〉 = 2ρ(n1, n2)ā2(n1)

(5)
where ā2(n) = 〈ana∗

n〉 is the ensemble average of the mean
square amplitude. Although the factorization (5) is true
only for a Gaussian process we shall assume to be at least
approximately valid also for processes slightly different
from a Gaussian one, and this represents the main ap-
proximation of the present analysis.

It is convenient to use a Wigner-Moyal transform [20].
One introduce the new variables

M =
n1 + n2

2
, m = n1 − n2. (6)

Then the equation (4) becomes

i
∂ρ

∂t
+ 4λ sinh

1
2

∂

∂M
sinh

∂ρ

∂m
+ 2µ

(
ā2

(
M +

m

2

)

−ā2
(
M − m

2

))
ρ = 0. (7)

We consider a chain of N molecules and impose cyclic
boundary conditions. The Fourier transform of the two-
point correlation function is defined by

F (k, M, t) =
∑
m

e−ikmρ
(
M +

m

2
, M − m

2
, t

)
(8)

where k takes values in the first Brillouin zone (BZ), k ∈
(−π, π). The inverse formula is

ρ
(
M +

m

2
, M − m

2
, t

)
=

1
N

BZ∑
k

eikmF (k, M, t)

=
1
2π

∫ π

−π

eikmF (k, M, t)dk. (9)

For m = 0 one obtains

ā2(M, t) =
1
N

BZ∑
k

F (k, M, t) =
1
2π

∫ π

−π

F (k, M, t)dk.

(10)
Now Fourier transforming equation (7) we get

∂F

∂t
+ 4λ sink sinh

1
2

∂

∂M
F + 4µ

∞∑
j=1

(−1)j±1

(2j − 1)!22j−1

×
(

∂2j−1

∂M2j−1
ā2(M)

) (
∂2j−1

∂k2j−1
F (k, M)

)
= 0 (11)

which is the expected nonlinear evolution equation
for F (k, M, t) in a mixed configuration-wave number
space (M, k). Using the definition (8) we see that
F (k, M, t) is a periodic function in the reciprocal space,
F (k + 2π) = F (k).

3 Stability analysis

As the unperturbed problem we shall consider a basic so-
lution F0(k) independent of M and t. This is the ran-
dom counterpart of the Stokes wave in a deterministic
approach. A small perturbation around this homogeneous
background is considered, namely

F (k, M, t) = F0(k) + εF1(k, M, t). (12)

According to (10) we have also

ā2(M, t) = ā2
0 + εā2

1(M, t) (13)

where

ā2
0 =

1
2π

∫ π

−π

F0(k)dk

ā2
1(M, t) =

1
2π

∫ π

−π

F1(k, M, t)dk. (14)



A. Vişinescu and D. Grecu: Modulational instability of the discrete self-trapping equation 227

When (12) is introduced into (11), neglecting terms of
order ε2, the following linear evolution equation for F1 is
obtained

∂F1

∂t
+ 4λ sink sinh

1
2

∂

∂M
F1

+ 4µ

∞∑
j=1

(−1)j+1

(2j − 1)!22j−1

∂2j−1F0

∂k2j−1

∂2j−1ā2
1(M)

∂M2j−1
= 0.

(15)

Looking for a plane wave solution

F1(k, M, t) = f1(k)ei(KM−Ωt)

after little algebra the following stability integral equation
is found

1+
µ

4πλ sin K
2

∫ π

−π

F0

(
k + K

2

) − F0

(
k − K

2

)
sin k − Ω

4λ sin K
2

dk = 0. (16)

The modulational instability is related to Ω complex with
a positive imaginary part, Ωi = ImΩ > 0. It is convenient
to compare (16) with the similar result for the continuum
case of the nonlinear Schrödinger equation [16]

1 +
µ

2πKλ

∫ ∞

−∞

F0

(
k + K

2

) − F0

(
k − K

2

)
k − Ω

2Kλ

dk = 0. (17)

The two expressions look very similarly and consequently
the final results will differ only quantitatively, although
the differences can be quite significant.

As a first example let us consider a δ-spectrum
for F0(k)

F0(k) = 2πā2
0δ(k). (18)

This corresponds to an uniform unperturbed ρ0(x), which
is a very unphysical assumption, but the final result be-
comes very simple, to which other more realistic situations
can be compared

Ωi = 4λ sin
K

2

√
µ

λ
ā2
0 − sin2 K

2
· (19)

It represents a limiting situation, the most favorable for
the development of the instability. From (19) the instabil-
ity exists if λ, µ are positive quantities (focusing case) and
if sin2 K

2 < µ
λ ā2

0.

3.1 Gaussian spectrum

In the next example let us assume F0(k) to be a Gaussian
function

F0(k) =
√

2π

σ
ā2
0e

− k2

2σ2 . (20)

This expression doesn’t satisfy the periodicity condition
but for σ vanishingly small the errors introduced are negli-
gible. Also the relation (14) is satisfied up to exponentially
small terms.

It is convenient to introduce the new integration vari-
able t = 1√

2σ
(k ± K

2 ) and the notations

z± =
1√
2σ

(
Ω

2λ sinK
± tan

K

2

)
(21)

f±(t) =
1√
2σ

(
sin

√
2σt ± tan

K

2

(
1 − cos

√
2σt

))
.

Then (16) becomes

ā2
0√

2πσ

µ

λ sin K

∫ π√
2σ

− π√
2σ

e−t2
(

1
z+ − f+

− 1
z− − f−

)
dt = 1.

(22)
In leading order in σ the integral (22) can be evaluated
using the steepest descent method [21]. Denoting G±(t) =
t2 + ln(z± − f±(t)), t± the zeros of the first derivatives
dG±(t)

dt = 0, A± = 1
2

d2G±
dt2 for t = t±, and extending the

integration limits to infinity the integral is given by

√
π

(
1√
A+

e−G+(t+) − 1√
A−

e−G−(t−)

)
. (23)

In the limit σ � 1 we have approximatively t± � 1
2z±

=√
σ
2

1
Ω

2λ sin K ±tan K
2

, e−G±(t±) � 1
z± and A± � 1 and the

integral becomes −2
√

2πσ tan K
2

( Ω
2λ sin K )2−(tan K

2 )2
. Considering Ω purely

imaginary, Ω = iΩi, we re obtain the result (19) of the
δ-spectrum case.

3.2 Lorentzian spectrum

A simpler example is a Lorentzian form for F0(k)

F0(k) = ā2
0

p
√

1 + p2

sin2 k
2 + p2

· (24)

It satisfies the periodicity condition and relation (14). The
unperturbed two-point correlation function is easily calcu-
lated using (24) in the definition relation (9). Straightfor-
ward calculations give

ρ0(m) =
ā2
0

[1 + 2p(
√

1 + p2 + p)]m
(25)

representing an exponentially decreasing law. For p � 1
we have ρ0(m) � ā2

0e
−2pm.

In order to calculate the integral (16) it is convenient
to introduce the new integration variable t = tan k

2 . Then
the integral is over the whole real axis and can be done in
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the t-complex plane. In the new variable F0(k± K
2 ) writes

F0

(
k ± K

2

)
→

ā2
02p

√
1 + p2(1 + t2)(

1 + cos K
2 + 2p2

)
t2 ± 2

(
sin K

2

)
t +

(
1 − cos K

2 + 2p2
)

(26)

having poles at

t+1,2 = −a± ib t−1,2 = a ± ib

where

a =
sin K

2

1 + cos K
2 + 2p2

, b =
2p

√
1 + p2

1 + cos K
2 + 2p2

· (27)

Considering Ω purely imaginary, Ω = iΩi and denoting
z = Ωi

4λ sin K
2

we have also

1
Ω

4λ sin K
2
− sin k

→ −i
1 + t2

zt2 + 2it + z

having poles at

t3 = i

√
1 + z2 − 1

z
t4 = −i

√
1 + z2 + 1

z
·

We shall consider z as a small quantity and consequently
t4 � 1. Closing the contour in the lower complex half-
plane t its contribution can be neglected in the first order.
Therefore we shall take into account only the poles t

(±)
2

and after straightforward calculations the relation (16) be-
comes

1 =
µā2

0

λ sin K
2

MA + MX

X2 + M2
(28)

where

A = 1 + a2 − b2, B = 2ab

X = zA + 2b, M = 2a − zB. (29)

When p � 1 we approximate

a � sin K
2

1 + cos K
2

, b � 2p

1 + cos K
2

(30)

terms of order p2 being neglected. Then (28) can be
considerably simplified and finally we get

Ωi = 4λ sin
K

2

(√
µ

λ
ā2
0 − sin2 K

2
−2p

1 + cos K
2 + cos k

1 + cos K
2

)
·

(31)
Modulational instability occurs for λ and µ > 0,
sin2 K

2 < µ

λā2
0

and if p is smaller than a critical value.

Both results (19) and (31) can be compared with the

similar results obtained in the NLS case [16]

Ω
(L)
i = 2Kλ

(√
µ

λ
ā2
0 −

K2

4
− p

)
(32)

where the superscript L refers to Lorentzian form of F0(k).
It is easily seen that (32) is obtained in a long wave
limit (K � 1). In the Lorentzian case both relations (31)
and (32) show a behavior similar to the well known phe-
nomena of Landau damping in plasma physics [22,23]
namely with increasing p the imaginary part Ωi can be-
come negative and no instability develops.

In other words any disturbance in the initial state is
evolving into an instability only if a certain long range
correlation between the amplitudes in two different points
exists. If the correlation is shorter than a certain limit
(depending on the wave vector of the disturbance and the
amplitude of the initial correlation function) the insta-
bility is suppressed. This was several times emphasized in
hydrodynamics [17,18], and remains valid also for discrete
systems (like nonlinear molecular chains) in which case the
randomness can be attributed to the temperature and to
the interactions with the surrounding media.

In conclusion, in this paper the influence of statistical
properties of a discrete medium where the modulational
instability takes place was discussed through the simplest
possible model. The techniques used in the continuum case
were adapted for the discrete situation. No qualitative
differences between these two situations can appear, al-
though quantitatively the differences can be quite notable.
In the statistical approach the instability is strongly de-
pendent on the parameters characterizing the initial con-
ditions and it would be very interesting to consider other
forms for F0(k), both for continuum and discrete case.
The interplay between nonlinearity (even for more com-
plicated models), discreteness and randomness represents
a still open problem for the phenomenon of modulational
instability.

Helpful discussions with Dr. A.S. Cârstea are kindly acknowl-
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